3.1.67 \(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx\) [67]

Optimal. Leaf size=110 \[ \frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \tan (c+d x)}{d \sqrt {b \sec (c+d x)}} \]

[Out]

2*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/
2)/(b*sec(d*x+c))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/
2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b/d+2*C*tan(d*x+c)/d/(b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4132, 3856, 2720, 4131, 2719} \begin {gather*} \frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \tan (c+d x)}{d \sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*(A - C)*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*B*Sqrt[Cos[c + d*x]]*El
lipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(b*d) + (2*C*Tan[c + d*x])/(d*Sqrt[b*Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx &=\frac {B \int \sqrt {b \sec (c+d x)} \, dx}{b}+\int \frac {A+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx\\ &=\frac {2 C \tan (c+d x)}{d \sqrt {b \sec (c+d x)}}+(A-C) \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx+\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b}\\ &=\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \tan (c+d x)}{d \sqrt {b \sec (c+d x)}}+\frac {(A-C) \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=\frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \tan (c+d x)}{d \sqrt {b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.94, size = 156, normalized size = 1.42 \begin {gather*} \frac {2 e^{-i d x} \sqrt {b \sec (c+d x)} (-i \cos (d x)+\sin (d x)) \left (-3 A \cos (c+d x)+3 C \cos (c+d x)+3 i B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(A-C) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+3 i C \sin (c+d x)\right )}{3 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[b*Sec[c + d*x]]*((-I)*Cos[d*x] + Sin[d*x])*(-3*A*Cos[c + d*x] + 3*C*Cos[c + d*x] + (3*I)*B*Sqrt[Cos[c
+ d*x]]*EllipticF[(c + d*x)/2, 2] + (A - C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/
2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + (3*I)*C*Sin[c + d*x]))/(3*b*d*E^(I*d*x))

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 35.00, size = 720, normalized size = 6.55

method result size
default \(-\frac {2 \left (i A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-i A \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-i B \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )-i C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+i C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+i A \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-i A \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-i B \sin \left (d x +c \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-i C \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+i C \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+A \left (\cos ^{2}\left (d x +c \right )\right )-A \cos \left (d x +c \right )+C \cos \left (d x +c \right )-C \right ) \sqrt {\frac {b}{\cos \left (d x +c \right )}}}{d b \sin \left (d x +c \right )}\) \(720\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/d*(I*A*cos(d*x+c)*sin(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)-I*A*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*El
lipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-I*B*cos(d*x+c)*sin(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1
/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-I*C*cos(d*x+c)*sin(d*x+c)*EllipticE(I*(-1+cos(d*x+c))
/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+I*C*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1
/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)+I*A*sin(d*x+c)*Elli
pticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-I*A*sin(d*x+c
)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-I*B*sin
(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-I
*C*sin(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)+I*C*sin(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)+A*cos(d*x+c)^2-A*cos(d*x+c)+C*cos(d*x+c)-C)*(b/cos(d*x+c))^(1/2)/b/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.72, size = 153, normalized size = 1.39 \begin {gather*} \frac {-i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, A - i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, C \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*sqrt(b)*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + sqrt(2)*(I*A - I*C)*sqrt(b)*weierstrassZeta(-4, 0, weierst
rassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + sqrt(2)*(-I*A + I*C)*sqrt(b)*weierstrassZeta(-4, 0, weie
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*C*sqrt(b/cos(d*x + c))*sin(d*x + c))/(b*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {b \sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sqrt(b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________